
7. POWER IN PACKAGES
JHU Physics & Astronomy

Python Workshop 2017

Lecturer: Mubdi Rahman

NOW, FOR SOME FUN!

We’ve been showing you how to do things in
Python that you could (for the most part) in many
other scripting/programming languages. Let’s show
you things that make Python great!

NOW, FOR SOME FUN!

We’ve been showing you how to do things in
Python that you could (for the most part) in many
other scripting/programming languages. Let’s show
you things that make Python great!

In this section, we’ll also be using

the astroquery package. You

should install this now using pip

or the package manager.

THE PANDAS IN THE ROOM

Pandas is a fully-featured data analysis library. This is well beyond the
scope of our workshop, but it allows a great deal of data mangling and
manipulation features. Particularly useful for pivot tables & timeseries.

http://pandas.pydata.org

http://pandas.pydata.org/

A QUICK PANDAS EXAMPLE

Quickly turning a two-dimensional dataset into a three-dimensional
dataset using a column to group on:

import pandas as pd

Creating Random Data:
tmp_dates = pd.date_range(‘2015-10-29’,

periods= 100) # Date
tmp_cat = n.random.randint(1, 4, 100) # Category
tmp_data = n.random.randn(100) # Data

Creating Pandas Dataframe:
df1 = pd.DataFrame(
{‘dates':tmp_dates, 'cat':tmp_cat, 'data':tmp_data}
)

A QUICK PANDAS EXAMPLE

Now to group by category as well as date:
pdf1 = df1.pivot('dates', 'cat', 'data')

print(pdf1)

Returns:
cat 1 2 3
dates
2015-10-29 0.515307 NaN NaN
2015-10-30 NaN 0.163088 NaN
2015-10-31 0.972008 NaN NaN
2015-11-01 NaN -0.502585 NaN
2015-11-02 NaN 0.274932 NaN
2015-11-03 NaN 0.258800 NaN
2015-11-04 -1.579318 NaN NaN

WORLD COORDINATE SYSTEM

Typically, you need to know where on an image each pixel is in
astronomical coordinates (either RA & Dec, or maybe Galactic
Longitude and Latitude). This information (typically referred to as
WCS) is typically stored in the header of your FITS file. To use this
information, you can use the astropy.wcs module:

from astropy.wcs import WCS

If you have a header object named ‘head1’ from
either fits.getheader() or fits.open():
w = WCS(head1)

Or just getting one from a file itself:
w = WCS(filename.fits)

FROM PIXELS TO COORDINATES

The wcs object contains functions that conversion from pixel to world
coordinates and vice versa:

From pixel => world:
ra, dec = w.all_pix2world(xpx, ypx, 0)# Can be lists

The third parameter indicates if you’re starting
from 0 (Python-standard) or 1 (FITS-standard)

From world => pixel:
xpx, ypx = w.all_world2pix(ra, dec, 0)

FROM PIXELS TO COORDINATES

The wcs object contains functions that conversion from pixel to world
coordinates and vice versa:

From pixel => world:
ra, dec = w.all_pix2world(xpx, ypx, 0)# Can be lists

The third parameter indicates if you’re starting
from 0 (Python-standard) or 1 (FITS-standard)

From world => pixel:
xpx, ypx = w.all_world2pix(ra, dec, 0)

Note that the order of the input

are in standard Cartesian

ordering, and the opposite of

the FITS image read in.

PLOTTING A FITS IMAGE

It is important to note that most often, the pixels from the FITS image
are not perfectly aligned with the coordinate grid, and aren’t
necessarily the same size on sky throughout the image. In these cases,
it is critical to use pcolor (or pcolormesh) to get the orientations
correct.

If you want to use imshow, remember anything else you’d like to plot
should be converted into pixel coordinates through the
w.all_world2pix() function.

Next, we’ll run through plotting an image:

PLOTTING A FITS IMAGE

Getting Data
imfile = fits.open(filename)
header, im = imfile[0].header, imfile[0].data
w = WCS(header)

Making Indices
xpx = np.arange(im.shape[1]+1)-0.5
ypx = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)

PLOTTING A FITS IMAGE

Getting Data
imfile = fits.open(filename)
header, im = imfile[0].header, imfile[0].data
w = WCS(header)

Making Indices
xpx = np.arange(im.shape[1]+1)-0.5
ypx = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)

Getting all of the

image and

header data

PLOTTING A FITS IMAGE

Getting Data
imfile = fits.open(filename)
header, im = imfile[0].header, imfile[0].data
w = WCS(header)

Making Indices
xpx = np.arange(im.shape[1]+1)-0.5
ypx = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)

Making list of bin edges. Remember

there are N+1 bins. The coordinates

are defined on the centre of the pixel,

so the first bin edge is at -0.5.

PLOTTING A FITS IMAGE

Getting Data
imfile = fits.open(filename)
header, im = imfile[0].header, imfile[0].data
w = WCS(header)

Making Indices
xpx = np.arange(im.shape[1]+1)-0.5
ypx = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)

np.meshgrid() creates two, 2-D arrays filled with

the values in the two 1-D arrays you give it:

np.meshgrid([1,2],[3,4]) =
[1, 2] [3, 3]
[1, 2], [4, 4]

PLOTTING A FITS IMAGE

Getting Data
imfile = fits.open(filename)
header, im = imfile[0].header, imfile[0].data
w = WCS(header)

Making Indices
xpx = np.arange(im.shape[1]+1)-0.5
ypx = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)

Converting the indices

into RA, Dec values for all

values in the lists.

PLOTTING A FITS IMAGE

Getting Data
imfile = fits.open(filename)
header, im = imfile[0].header, imfile[0].data
w = WCS(header)

Making Indices
xpx = np.arange(im.shape[1]+1)-0.5
ypx = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)

Final Plot

PLOTTING A FITS IMAGE

Getting Data
imfile = fits.open(filename)
header, im = imfile[0].header, imfile[0].data
w = WCS(header)

Making Indices
xpx = np.arange(im.shape[1]+1)-0.5
ypx = np.arange(im.shape[0]+1)-0.5
xlist, ylist = np.meshgrid(xpx, ypx)
ralist, declist = w.all_pix2world(xlist, ylist, 0)

Plotting
plt.pcolormesh(ralist, declist, im, vmin=min, vmax=max)

Final Plot

Remember that RA traditionally

increases to the left, so you’ll

have to flip the axis manually

through plt.xlim()

COORDINATE TRANSFORMATIONS

Astropy provides a way of dealing with coordinates, and
automatically deal with conversions:

from astropy.coordinates import SkyCoord

Making Coordinates:
c1 = SkyCoord(ra, dec, frame=‘icrs’, unit=‘deg’)
c2 = SkyCoord(l, b, frame=‘galactic’, unit=‘deg’)
c3 = SkyCoord(’00h12m30s’, ‘+42d12m00s’)

Printing and Conversions:
c1.ra, c1.dec, c1.ra.hour, c2.ra.hms, c3.dec.dms
c2.fk5, c1.galactic # Converting Coordinates
c2.to_string(‘decimal’), c1.to_string(‘hmsdms’)

PHYSICAL UNITS

Astropy provides a way to manipulate quantities, automatically taking
care of unit conversions automatically:

from astropy import units as u

Defining Quantities with units:
val1, val2 = 30.2 * u.cm, 2.2E4 * u.s
val3 = val1/val2 # Will be units cm / s

Converting Units
val3km = val3.to(u.km/u.s)

Simplifying Units
val4 = (10.3 * u.s / (3 * u.Hz)).decompose()

PHYSICAL/ASTRONOMICAL CONSTANTS

Astropy also provides constants (with units):

from astropy import constants as c

Some constants
c.k_B, c.c, c.M_sun, c.L_sun

Can use with units
energy = c.h * 30 * u.Ghz

Can convert units
mass = (3.2E13 * u.kg).to(c.M_sun)

ASTRONOMICAL QUERYING

Astroquery allows
access to online
databases of various
sources.

The documentation is
located:

http://astroquery.read
thedocs.org/en/latest/

http://astroquery.readthedocs.org/en/latest/

ASTRONOMICAL QUERYING

There are lots of possible databases to query, but as a quick example
(from Simbad):

from astroquery.simbad import Simbad

Simbad
s = Simbad()

Table of Matching Objects
tab1 = s.query_object(‘M31’)

Printing Table
tab1.pprint()

ASTRONOMICAL QUERYING

There are lots of possible databases to query, but as a quick example
(from Simbad):

from astroquery.simbad import Simbad

Simbad
s = Simbad()

Searching on Region
c1 = SkyCoord(298.4, -0.4, frame=‘galactic’,
unit=‘deg’)

tab1 = s.query_region(c1, radius=1*u.deg)

Printing Table
tab1.pprint()

MPLD3: MATPLOTLIB IN YOUR BROWSER

Matplotlib Figure D3.js Webpage

MPLD3: MATPLOTLIB IN YOUR BROWSER

While not every matplotlib function is supported, it is easy to export
your plot into an interactive HTML-based plot:

import mpld3

If you have a figure already defined: fig1
mpld3.save_html(fig1, filename)

Or if you do not have a variable for your figure
mpld3.save_html(plt.gcf(), filename)

PLAY TIME! To tell you I’m sorry for

breaking your heart.

