
6. ADVANCED PLOTTING
JHU Physics & Astronomy

Python Workshop 2017

Lecturer: Mubdi Rahman

MATPLOTLIB REDUX

You’ve got the basics, now
let’s unleash the power!

ALPHA/TRANSPARENCY

Every plotting function in
matplotlib accepts the
“alpha” parameter. This
parameter goes from 0
to 1, where 0 indicates
fully transparent to 1
meaning fully opaque.
For instance:

plt.scatter(
x, y, alpha=1

)

ALPHA/TRANSPARENCY

Every plotting function in
matplotlib accepts the
“alpha” parameter. This
parameter goes from 0
to 1, where 0 indicates
fully transparent to 1
meaning fully opaque.
For instance:

plt.scatter(
x, y, alpha=0.05

)

ALPHA/TRANSPARENCY

Every plotting function in
matplotlib accepts the
“alpha” parameter. This
parameter goes from 0
to 1, where 0 indicates
fully transparent to 1
meaning fully opaque.
For instance:

plt.scatter(
x, y, alpha=0.05

) Saving to EPS doesn’t support

transparency.

IMAGES

Images (when stored in an array) are in a different order than in the
Cartesian sense. For instance, finding coordinate (3,2):

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

0,4 1,4 2,4 3,4

0,3 1,3 2,3 3,3

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Image Coordinates Cartesian Coordinates

IMAGES

Images (when stored in an array) are in a different order than in the
Cartesian sense. For instance, finding coordinate (3,2):

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

0,4 1,4 2,4 3,4

0,3 1,3 2,3 3,3

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Image Coordinates Cartesian Coordinates

Fi
rs

t
A

x
is

Second Axis

IMAGES

Images (when stored in an array) are in a different order than in the
Cartesian sense. For instance, finding coordinate (3,2):

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

0,4 1,4 2,4 3,4

0,3 1,3 2,3 3,3

0,2 1,2 2,2 3,2

0,1 1,1 2,1 3,1

0,0 1,0 2,0 3,0

Image Coordinates Cartesian Coordinates

Fi
rs

t
A

x
is

First AxisSecond Axis

S
e
co

n
d

 A
x
is

IMAGES

Images (when stored in an array) are in a different order than in the
Cartesian sense:

array([[0, 0, 0],
[1, 0, 0],
[2, 0, 0]])

arr[:,0] =
array([0, 1, 2])

Image Coordinates Cartesian Coordinates

If you want matplotlib to show

your image in Cartesian

coordinates, you will need to

flip and reverse your array.

IMAGES

Images (when stored in an array) are in a different order than in the
Cartesian sense:

array([[0, 0, 0],
[1, 0, 0],
[2, 0, 0]])

arr[:,0] =
array([0, 1, 2])

Image Coordinates Cartesian Coordinates

If you want matplotlib to show

your image in Cartesian

coordinates, you will need to

transpose and reverse your

array.

IMSHOW

Imshow is the go-to
image plotting
function in matplotlib.
The basic syntax is:

plt.imshow(arr1)

But this likely doesn’t
do what you want it
to, so there are many
optional arguments to
use.

IMSHOW

Moving to Cartesian
coordinates manually:

plt.imshow(
arr1[:,::-1].T

)

or if you want to
make it a little more
automated:

plt.imshow(
arr1.T,
origin=‘lower’

)

IMSHOW

Moving to Cartesian
coordinates manually:

plt.imshow(
arr1[:,::-1].T

)

or if you want to
make it a little more
automated:

plt.imshow(
arr1.T,
origin=‘lower’

)

If you are plotting a FITS

image, the axis are ordered

in the way imshow would

expect. All you need to do is

add the origin=‘lower’

keyword.

IMSHOW

The fuzziness is due to
interpolation between
pixels. The default is
“bilinear”. To see the
pixels:

plt.imshow(
arr1.T,
origin=‘lower’,
interpolation=
‘nearest’

)

IMSHOW

By default, the image
is placed such that the
pixels are centred on
their pixel number. This
can be changed using
the “extent” argument:

plt.imshow(
…, extent=[0,

5, 0, 10]
)

IMSHOW

By default, the image
is placed such that the
pixels are centred on
their pixel number. This
can be changed using
the “extent” argument:

plt.imshow(
…, extent=[0,

5, 0, 10]
)

Note that this changes the

aspect ratio. This happens by

default, and may change what

you’ve set as your axis size.

IMSHOW

By default, the axis
ratio of the pixels is
unity. You can change
this manually or
automatically using the
“aspect” argument:

plt.imshow(…,
aspect=‘auto’

)

‘auto’ ensures that the

axes doesn’t change its

size or location.

IMSHOW

imshow will try to
autoscale the image. If
you want a different
min or max value, you
can change the “vmin”
or “vmax” values:

plt.imshow(…,
vmin=0.3

)

IMSHOW

imshow will try to
autoscale the image. If
you want a different
min or max value, you
can change the “vmin”
or “vmax” values:

plt.imshow(…,
vmin=0.3,
vmax=0.6

)

IMSHOW

imshow will try to
autoscale the image. If
you want a different
min or max value, you
can change the “vmin”
or “vmax” values:

plt.imshow(…,
vmin=0.3,
vmax=0.6

)
If the array contains NaNs, the

autoscaling will fail. In which

case, you need to manually set

vmin/vmax values.

IMSHOW

We can also change
the colourmap used to
turn floating point
values into colours:

plt.imshow(…,
cmap=plt.cm.jet

)

This is the default

colourmap

IMSHOW

We can also change
the colourmap used to
turn floating point
values into colours:

plt.imshow(…,
cmap=plt.cm.gray
)

COLOURMAPS

Matplotlib has a
large selection of
colourmaps available.
You can also code
your own! All of the
colourmaps are
located in the plt.cm
module.

Just a selection of built-in colour maps

COLOURMAPS

A general selection

of colourmap. Your

choice of colourmap

does matter.

Choose the one that

works best for your

purpose.

COLOUR BARS

You can create a
simple colour bar using
the convenience
function plt.colorbar:

plt.colorbar()

This will create a
colour bar that takes
some space from the
current axis.

COLOUR BARS

If you have a specific
location you want to
put the colour bar, use
the “cax” keyword

cbax =
fig.add_axes(loc)

plt.colorbar(
cax=cbax

)

COLOUR BARS

You can choose to have
the colour bar oriented
horizontally as
opposed to vertically:

plt.colorbar(
orientation=
“horizontal”

)

PCOLOR

If you don’t want to worry
about the orientation
issues or have images with
varying pixel sizes, you
can using the pcolor
function instead of imshow:

plt.pcolor(
xvals, yvals,
array

)

‘xvals’ and ‘yvals’ are
arrays with the values of
the x and y pixel edges.

PCOLOR

If you don’t want to worry
about the orientation
issues or have images with
varying pixel sizes, you
can using the pcolor
function instead of imshow:

plt.pcolor(
xvals, yvals,
array

)

‘xvals’ and ‘yvals’ are
arrays with the values of
the x and y pixel edges.

If you have a particularly

large array, use “pcolormesh”

rather than “pcolor”, which uses

more memory.

CONTOURS

Contours takes the
same arguments as
imshow, and by default
produces contours with
a jet colourmap:

plt.contour(…)

CONTOURS

You can set the colour
(or sequence of
colours) of the contours
(so that they are
uniform):

plt.contour(…,
colors=(‘r’,’b’)
)

CONTOURS

Setting the number of
contours:

plt.contour(
arr, 20, …

)

CONTOURS

Setting the specific
location of the
contours:

plt.contour(…,
levels=[0, 2.0]

)

CONTOURS

You can set labels on
the contours using the
“clabel” function:

c1 =
plt.contour(…)
plt.clabel(c1)

HISTOGRAMS

Matplotlib also provides
robust histogram
capabilities:

plt.hist(arr)

HISTOGRAMS

Matplotlib also provides
robust histogram
capabilities:

plt.hist(arr)

The histogram function takes a

one-dimensional array. If it isn’t

already, flatten it!

HISTOGRAMS

Choosing the number of
bins:

plt.hist(…,
bins=20

)

HISTOGRAMS

Choosing the number of
bins:

plt.hist(…,
bins=20

)

Or specific location of
bin edges:

plt.hist(…,
bins=bin_edges

)

HISTOGRAMS

Choosing steps instead
of bars:

plt.hist(…,
histtype=
‘stepfilled’

)

HISTOGRAMS

Or maybe you’d prefer
just the line?

plt.hist(…,
histtype=
‘step’

)

There is also a hist2d
command that
histograms 2D data into
an image.

HISTOGRAMS

Or maybe you’d prefer
just the line?

plt.hist(…,
histtype=
‘step’

)

There is also a hist2d
command that
histograms 2D data into
an image.

If you just want an array of

histogram values, check out the

numpy functions histogram,

histogram2d, and histogramdd

SUBPLOTS/MULTIPLE PLOTS

Making subplots are quite
easy using the convenience
function “subplot”:

ax1 = plt.subplot(
nrows, ncols,
plotnum

)

plotnum starts at 1.

1 2 3

4 5 6

SUBPLOTS/MULTIPLE PLOTS

Making subplots are quite
easy using the convenience
function “subplot”:

ax1 = plt.subplot(
nrows, ncols,
plotnum

)

plotnum starts at 1.

1 2 3

4 5 6

For simple, small numbers of

subplots, you can use an

alternate argument for the call:

plt.subplot(321)

where this axis is the first in a

grid of 3 rows and 2 columns.

SUBPLOTS/MULTIPLE PLOTS

More complicated plots
can be made by adding
specific axes:

ax1 = plt.axes(
[0.1, 0.1, 0.8, 0.8]
)

ax2 = plt.axes(
[0.75, 0.75, 0.2,
0.2]
)

I prefer this method.

ANNOTATIONS

Adding text to axes is
simple using the “text”
command:

plt.text(
x, y, “Text”

)

Or if adding to the figure:

plt.figtext(
x, y, “Text”

)

Where these coordinate
go from 0 to 1 in fractions
of the figure.

ANNOTATIONS

Anywhere you have text,
you can use latex by
enclosing the text in dollar
signs ($)

plt.text(…
“$x+y=\sqrt{z}$”

)

ANNOTATIONS

Anywhere you have text,
you can use latex by
enclosing the text in dollar
signs ($)

plt.text(…
“$x+y=\sqrt{z}$”

)If you want to avoid using the

(ugly) computer modern font

and just use whatever font

you’ve set matplotlib to use,

embed your latex commands in

the \mathdefault{…}
environment.

ANNOTATIONS: PATCHES

Adding additional shapes to the plot is called adding a “patch”.
There are a variety of patches available by importing:

from matplotlib import patches

There are a large number of various patches, including Rectangles,
Circles, Ellipses, and many more. Once a patch has been made using its
declaration (i.e., p1=patches.Circle(…)), it needs to be added
by:

ax1.add_patch(p1)
Or if you haven’t created a variable for your axis
plt.gca().add_patch(p1)

ANNOTATIONS: PATCHES

Looking at a ‘Circle’ patch:

p1 = patches.Circle(
(xloc, yloc),
radius=3,
edgecolor=‘g’,
facecolor=‘r’,
linewidth=4

)

ANNOTATIONS: PATCHES

Looking at a ‘Circle’ patch:

p1 = patches.Circle(
(xloc, yloc),
radius=3,
edgecolor=‘g’,
facecolor=‘None’,
linewidth=4

)

ANNOTATIONS: PATCHES

Looking at a ‘Circle’ patch:

p1 = patches.Circle(
(xloc, yloc),
radius=3,
edgecolor=‘g’,
facecolor=‘None’,
linewidth=4

)

Circles will only look circular if

the aspect ratio of the axis is 1

MULTIPLE AXES ON A SINGLE PLOT

You can create a second x or y
axis on the same plot (which
will be shown either on the top
or the right) using the twinx or
twiny methods:

ax2 = ax1.twinx()
ax3 = ax1.twiny()

ax2.set_ylim(20,30)
ax3.set_xlim(3,10.5)

EXERCISE TIME! At least I can say that I’ve

tried.

