
5. ADVANCED DATA TECHNIQUES
JHU Physics & Astronomy

Python Workshop 2017

Lecturer: Mubdi Rahman

SCIPY: FUNCTIONS YOU WANT, THE PACKAGE YOU NEED

The Docs: http://docs.scipy.org/doc/scipy/reference/

http://docs.scipy.org/doc/scipy/reference/

L.J. DURSI’S FIRST RULE OF PROGRAMMING

Rule #1: Don’t code!
For most common algorithms or problems that exist, there
are functions and modules that have been optimized and
tested by large groups of people who know what they’re

doing. Use these rather than programming your own.

Scipy has a lot of these functions and algorithms ready for
your use. In this lesson, we’ll go through a few of these

useful functions.

ORGANIZATION OF PACKAGES

Scipy

Optimize/Fitting

(scipy.optimize)

Integration

(scipy.integrate)

Image Processing

(scipy.ndimage)

Linear Algebra

(scipy.linalg)

Statistics

(scipy.stats)
Much More…

INTERPOLATION

Importing the Functions:

from scipy import interpolate

Basic one-dimensional interpolation:

funct1 = interpolate.interp1d(
xvals, yvals, kind=‘linear’, bounds_error=False,
fill_value=np.nan)

Kind options: ‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’

INTERPOLATION

Importing the Functions:

from scipy import interpolate

Basic one-dimensional interpolation:

funct1 = interpolate.interp1d(
xvals, yvals, kind=‘linear’, bounds_error=False,
fill_value=np.nan)

Kind options: ‘linear’, ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’
By default, the interpolation will

fail if you go beyond the

minimum and maximum points.

The bounds_error keywork helps

deal with this.

INTERPOLATION

Given a simple function:

funct1 =
interpolate.interp1d(
xvals, yvals,
kind=‘nearest’

)

INTERPOLATION

Given a simple function:

funct1 =
interpolate.interp1d(
xvals, yvals,
kind=‘nearest’

)

Nearest Neighbour
interpolation

INTERPOLATION

Given a simple function:

funct1 =
interpolate.interp1d(
xvals, yvals,
kind=‘linear’

)

Linear interpolation

INTERPOLATION

Given a simple function:

funct1 =
interpolate.interp1d(
xvals, yvals,
kind=‘slinear’

)

Linear Spline
(first order)

NDIMAGE

Library of functions useful for dealing with N-dimensional images. In
particular, we’ll be using the filters for smoothing. Also includes
functions to interpolate and manipulate images. Importing the library:

from scipy import ndimage

Includes basic filters:

ndimage.gaussian_filter(…)
ndimage.median_filter(…)

Or using generic convolution:

ndimage.convolve(…)

NDIMAGE

Library of functions useful for dealing with N-dimensional images. In
particular, we’ll be using the filters for smoothing. Also includes
functions to interpolate and manipulate images. Importing the library:

from scipy import ndimage

Includes basic filters:

ndimage.gaussian_filter(…)
ndimage.median_filter(…)

Or using generic convolution:

ndimage.convolve(…)

These functions work just as well

on 2-D or 3-D arrays as they do

on 1-D arrays.

SMOOTHING/FILTERING

Given an array:

ndimage.gaussian_filter(
arr1, sigma=1.0)

(This is a Gaussian.)

0 1 2 3 4 5 6 7 8 9



SMOOTHING/FILTERING

Given an array:

ndimage.gaussian_filter(
arr1, sigma=1.0)

0 1 2 3 4 5 6 7 8 9



SMOOTHING/FILTERING

Given an array:

ndimage.gaussian_filter(
arr1, sigma=1.0)

0 1 2 3 4 5 6 7 8 9



Values in the filter are in pixel

units.

SMOOTHING/FILTERING

Given an array:

ndimage.gaussian_filter(
arr1, sigma=3.0)

0 1 2 3 4 5 6 7 8 9



(This is also a Gaussian.

I can draw in PowerPoint)

SMOOTHING/FILTERING

Given an array:

ndimage.gaussian_filter(
arr1, sigma=3.0,
mode=‘reflect’)

The “mode” of the filtering indicates

what happens at the edges of the

dataset. “Reflect” treats the edges

of the domain as the inverse of the

dataset.

SMOOTHING/FILTERING

Given an array:

ndimage.gaussian_filter(
arr1, sigma=3.0,
mode=‘wrap’)

“Wrap” treats the data like a tiled

patchwork, with the data repeating

itself on either end.

INTEGRATION

Importing the Functions:

from scipy import integrate

Functions that integrate fixed samples (i.e., numpy arrays):

integrate.cumtrapz(…) # Composite trapezoidal
integrate.simps(…) # Simpson’s Rule
integrate.romb(…) # Romberg integration

Functions that integrate functions:

integrate.quad(…) # General Purpose Integration
integrate.nquad(…) # Multiple Variable
integrate.quadrature(…) # Fixed Tolerance Integration

INTEGRATION

Composite Trapezoidal (Cumulative)

intarr = integrate.cumtrapz(yarr, x=xarr)

This function returns an array (size one less than original array). To get
the final integrated value of the entire array:

total = intarr[-1]

INTEGRATION

Composite Trapezoidal (Cumulative)

intarr = integrate.cumtrapz(yarr, x=xarr)

This function returns an array (size one less than original array). To get
the final integrated value of the entire array:

total = intarr[-1]

This also works when an array isn’t

evenly spaced. Just make sure to

pass an array of x values.

INTEGRATION

Integrating functions (using quad):

Creating function to integrate:
funct1 = lambda x: x**2

Integrating the function over range [min, max]
total, err = integrate.quad(funct1, min, max)

Can integrate from negative infinity to positive infinity through:

total, err = integrate.quad(funct1, -np.inf, np.inf)

STATISTICS

Importing the Functions:

from scipy import stats

Provides access to a variety of useful functions:

stats.mode(arr1) # Modal Value

Statistical measures
stats.skew(arr1), stats.kurtosis(arr1), …

Trimmed Mean, Standard Deviation
stats.tmean(arr1, limits=[min, max]), stats.tstd(…)

Percentile -> Score
stats.scoreatpercentile(arr1, percentile)

OPTIMIZE/FITTING

Importing the Functions:

from scipy import optimize

Unlike the other operations, curve fitting is quite complex. Consequently,
there are a number of different functions and algorithms available to
handle any number of situations. Be sure that the fitting method you’re
using is doing what you think it is.

The basic functions you should know about:

optimize.curve_fit(…) # Fit a defined curve to data

Minimized the sum of square of an equation
optimize.leastsq(…)

optimize.minimize(…) # Minimize a function

OPTIMIZE/FITTING

Basic curve fitting, using curve_fit:

Function to fit to:
funct1 = lambda x,a,b,c:

a*np.sin(b*x + c)

OPTIMIZE/FITTING

Basic curve fitting, using curve_fit:

Function to fit to:
funct1 = lambda x,a,b,c:

a*np.sin(b*x + c)

Assuming data in arrays named
data_x and data_y:

Fitting the data:
param, covar =
optimize.curve_fit(

funct1, data_x, data_y
)

OPTIMIZE/FITTING

We can use the “minimize” function to be more flexible for fitting,
minimizing the “least-square” function:

Or if there are errors that you want to weight the fitting by:

෍(𝑑𝑎𝑡𝑎 − 𝑚𝑜𝑑𝑒𝑙)2

෍
𝑑𝑎𝑡𝑎 − 𝑚𝑜𝑑𝑒𝑙

𝑒𝑟𝑟𝑜𝑟

2

Both of these functions are always positive (for real numbers), and
minimizing them ensures that you have adopted the best-fit parameters

OPTIMIZE/FITTING

Taking the equation from earlier:

funct1 = lambda x,a,b,c: a*np.sin(b*x + c)

Which converts into:

𝑦 = 𝑎 sin(𝑏𝑥 + 𝑐)

OPTIMIZE/FITTING

Taking the equation from earlier:

funct1 = lambda x,a,b,c: a*np.sin(b*x + c)

Which converts into:

funct2 = lambda par:
np.sum((data_y – funct1(data_x, *par))**2)

𝑦 = 𝑎 sin(𝑏𝑥 + 𝑐)

We can create a (single variable) function to minimize:

Or with errors:

funct2 = lambda par:
np.sum(((data_y – funct1(data_x, *par))/err)**2)

OPTIMIZE/FITTING

Taking the equation from earlier:

funct1 = lambda x,a,b,c: a*np.sin(b*x + c)

Which converts into:

funct2 = lambda par:
np.sum((data_y – funct1(data_x, *par))**2)

𝑦 = 𝑎 sin(𝑏𝑥 + 𝑐)

We can create a (single variable) function to minimize:

Or with errors:

funct2 = lambda par:
np.sum(((data_y – funct1(data_x, *par))/err)**2)

If you have a tuple, list, or array

that contains all the parameters

you want to pass to a function in

order, you can pass it by using

the asterisk (*).

OPTIMIZE/FITTING

Taking the equation from earlier:

funct1 = lambda x,a,b,c: a*np.sin(b*x + c)

Which converts into:

funct2 = lambda par:
np.sum((data_y – funct1(data_x, *par))**2)

𝑦 = 𝑎 sin(𝑏𝑥 + 𝑐)

We can create a (single variable) function to minimize:

Or with errors:

funct2 = lambda par:
np.sum(((data_y – funct1(data_x, *par))/err)**2)

Notice that the minimizing

functions have only one

argument, which is a 1-D vector

of the required parameters.

OPTIMIZE/FITTING

Piecing this into the minimize_scalar function:

result = optimize.minimize(funct2, x0=initialguess)

The initial guess is an array with the same size as the parameters you
want to fit.

This function abstracts a variety of different algorithms with different
possible parameters. For instance you can use the following to define
bounds for the fitting:

result = optimize.minimize(
funct2, x0=initialguess, method=‘L-BFGS-B’,
bounds=((0, 5), (0, 2), (0,3))

)

OPTIMIZE/FITTING

Once you have the result, you have lots of information provided to you
as a dictionary:

result[‘x’] # The final parameters of the fit
result[‘success’] # Whether the fit was successful
result[‘nit’] # Number of Iterations Performed
result[‘jac’] # The jacobian of the fit

OPTIMIZE/FITTING

Once you have the result, you have lots of information provided to you
as a dictionary:

result[‘x’] # The final parameters of the fit
result[‘success’] # Whether the fit was successful
result[‘nit’] # Number of Iterations Performed
result[‘jac’] # The jacobian of the fit

When fitting, especially this way,

check to ensure convergence.

EXERCISE TIME! Hello from the outside.

