
1. BASICS OF PYTHON
JHU Physics & Astronomy

Python Workshop 2017

Lecturer: Mubdi Rahman

HOW IS THIS WORKSHOP GOING TO WORK?

We will be going over all the basics you need to get started and get
productive in Python! Please code along with us as we go!

There are likely multiple ways of doing many things in Python, but
we’re going to show you one way. It may not be the best for your
particular purposes, but we will try to be self consistent.

We will constantly refer you back to the documentation. The packages
we have here have far more functionality than the scope of this
workshop. If there’s something that you want to do, Python likely has a
package or function that can do it (or at least make your life easier).

HOW IS THIS WORKSHOP GOING TO WORK?

We will be going over all the basics you need to get started and get
productive in Python! Please code along with us as we go!

There are likely multiple ways of doing many things in Python, but
we’re going to show you one way. It may not be the best for your
particular purposes, but we will try to be self consistent.

We will constantly refer you back to the documentation. The packages
we have here have far more functionality than the scope of this
workshop. If there’s something that you want to do, Python likely has a
package or function that can do it (or at least make your life easier).

These boxes will have useful

tidbits about python conventions

or hints on how to make your

coding life easier!

STATEMENT OF LEARNING

This workshop is an open and respectful environment where all
participants with a diversity of backgrounds and experiences are
welcome to proceed at their own pace and ask questions without
judgment.

We encourage all participants to work together and ask questions to
your peers and your instructors, however simple they may seem.

We (your instructors) are here to provide assistance on the course
content to help all participants maximize the value of this workshop
for them.

WHY PYTHON?

Open Source/Free: No need to worry about licences

Cross-platform: Can be used with Windows/Macs OS/Linux

Full-featured Packages: If there’s something you want to do, there’s
probably a package out there to help you

Code Portability: With most code, it can run unaltered on a plethora
of computers so long as all the required modules are supplied

Large and Growing Community: People from all fields from
Astronomy to Sociology are coding in Python, creating a diverse and
rich community of experts all over.

WHY PYTHON?

Open Source/Free: No need to worry about licences

Cross-platform: Can be used with Windows/Macs OS/Linux

Full-featured Packages: If there’s something you want to do, there’s
probably a package out there to help you

Code Portability: With most code, it can run unaltered on a plethora
of computers so long as all the required modules are supplied

Large and Growing Community: People from all fields from
Astronomy to Sociology are coding in Python, creating a diverse and
rich community of experts all over.

In this workshop, we’ll be using

Python 3, but teach you the

differences in Python 2 (which is

a holdover across the community)

Running a python script from beginning to end in your favourite terminal

RUNNING PYTHON

Directly from script:

>> python scriptname.py

Running a python script from beginning to end in your favourite terminal

RUNNING PYTHON

Directly from script:

>> python scriptname.py Python scripts traditionally have

the extension “.py”

RUNNING PYTHON

Directly from script:

>> python scriptname.py

Interactively:

>> ipython

Opening an “ipython” process to either run a script, or use as a

“calculator” – or both!

RUNNING PYTHON

Directly from script:

>> python scriptname.py

Interactively:

>> ipython

Opening an “ipython” process to either run a script, or use as a

“calculator” – or both!

You can also run straight python

interactively, but this is not

recommended

RUNNING PYTHON

Directly from script:

>> python scriptname.py

Interactively:

>> ipython

Running a script once in ipython:

In [1]: %run scriptname.py

or:

In [1]: execfile(‘scriptname.py’)

LEAVING PYTHON

If in script: python will automatically exit when script has completed

Interactively: just type

In [1]: exit

Or press: Ctrl-D (on Windows, Linux, and Macs)

LEAVING PYTHON

If in script: python will automatically exit when script has completed

Interactively: just type

In [1]: exit

Or press: Ctrl-D (on Windows, Linux, and Macs)

Ctrl-C will not exit you out of

(i)python, but rather cancel what

you are currently doing

INTERACTIVE PYTHON (IPYTHON)

A special shell on top of python that makes using it
interactively a breeze. It includes such features as:

➢ Tab-complete (both functions and variables)

➢ Documentation at the push of a “?”

➢ Full history accessible by pressing up and down

➢ Variables stay loaded for you to investigate and
manipulate

IPYTHON MAGIC WORDS & CHARACTERS

In [1]: functname?To get documentation (for anything):

In [2]: !cd dirnameTo run a shell command:

In [3]: %run scriptname.pyTo run a script file:

In [4]: %timeit commandTo time a function:

In [5]: %historyTo see your command history:

IPYTHON MAGIC WORDS & CHARACTERS

In [1]: functname?To get documentation (for anything):

In [2]: !cd dirnameTo run a shell command:

In [3]: %run scriptname.pyTo run a script file:

In [4]: %timeit commandTo time a function:

In [5]: %historyTo see your command history:

Many basic shell commands (i.e.,

cd, ls, pwd) work in ipython

without the use of the bang (!)

ANACONDA: WHAT WE’LL BE USING

CANOPY: MATLAB/IDL-LIKE PACKAGE

CANOPY: MATLAB/IDL-LIKE PACKAGE

File Browser

CANOPY: MATLAB/IDL-LIKE PACKAGE

Text

Editor

CANOPY: MATLAB/IDL-LIKE PACKAGE

Ipython Terminal

JUPYTER NOTEBOOK: ANOTHER OPTION

Can launch from Anaconda: runs a python session in the background

JUPYTER NOTEBOOK: ANOTHER OPTION

Runs a “notebook” in a web browser. Keeps code and notes together.

JUPYTER NOTEBOOK: ANOTHER OPTION

Headers and Notes

JUPYTER NOTEBOOK: ANOTHER OPTION

Code

(cells run independently)

JUPYTER NOTEBOOK: ANOTHER OPTION

Code

(cells run independently)

We will be distributing the

solutions to the example

problems through Jupyter

notebooks.

EVEN MORE HEAVYWEIGHT OPTIONS

Can develop python in Visual

Studio for full IDE Experience

MODULES: THE POWER OF PYTHON

The base language of Python is actually quite limited. Most of its
power comes from Modules (or sometimes referred to as Packages)

Modules must be imported before they can be used:

In [1]: import module1
In [2]: import module2, module3

Importing single or multiple
modules on a single line

Once imported, you can access functions or variables:

In [3]: module1.function1()

MODULES: THE POWER OF PYTHON

Sometimes typing the module name all the time can be annoying in
which case:

In [1]: import module1 as m1
In [2]: from module2 import function2

Creating a shorter
name or just getting
the function you
want

Once imported, you can access functions or variables:

In [3]: m1.function1()
In [4]: function2()

MODULES: THE POWER OF PYTHON

Sometimes typing the module name all the time can be annoying in
which case:

In [1]: import module1 as m1
In [2]: from module2 import function2

Creating a shorter
name or just getting
the function you
want

Once imported, you can access functions or variables:

In [3]: m1.function1()
In [4]: function2()

Some places will show examples

that involve importing all

functions in a module by:

from module1 import *

While this may seem handy, it is

dangerous. DON’T DO THIS!

INSTALLING NEW MODULES

Anaconda provides the majority of modules you’ll want and/or need
automatically. But there are modules that you’ll likely want to get.
Anaconda makes this easy using the Environments Tab

INSTALLING NEW MODULES

Python also makes installing packages easy in general using pip on
the command line:

C:\Users\Mubdi> pip install packagename

This downloads and installs any package available on the
(centralized) Python Package Index (PyPI)

C:\Users\Mubdi> pip install http://url.goes.here

This downloads and installs the package from somewhere on the
internet

BASICS OF A SCRIPT: COMMENTS

The most important part of any script

In [1]: # This is a comment
In [2]: # This is also a comment

For longer comments (in a script for instance):

'''
This text is in a comment
So is this text
'''
This text is outside a comment

BASICS OF A SCRIPT: COMMENTS

Take the comment pledge:

“I will comment liberally
and consistently

throughout all code I
write, or so help me

Python guru.”

BASICS OF A SCRIPT: COMMENTS

Take the comment pledge:

“I will comment liberally
and consistently

throughout all code I
write, or so help me

Python guru.”
Comment. It’s the right thing to

do. Just do it. Really.

BASICS OF A SCRIPT: INDENTATION

Python uses indents to indicate blocks of code – no brackets!

My schematic python script

command 1
command 2
command 3

inner command 1
inner command 2

more inner command 1
inner command 3

command 4

BASICS OF A SCRIPT: INDENTATION

Python uses indents to indicate blocks of code – no brackets!

My schematic python script

command 1
command 2
command 3

inner command 1
inner command 2

more inner command 1
inner command 3

command 4 Let your text editor deal with

indenting for you. And when you

need to do it yourself, use

spaces not tabs.

BASICS OF A SCRIPT: VARIABLES

Variables are simple and flexible in python. There is no need to
declare any variable type before setting it. And they can be set at
any point throughout the script or on the fly (if using it interactively):

In [1]: var1 = value # No need to declare
In [2]: var2, var3 = value2, value3
In [3]: # Multiple Values can be set at once

Anything can be a variable in python: numbers, strings, functions,
modules, et cetera. You can check out what type the variable is by:

In [3]: type(var1)

BASICS OF A SCRIPT: PRIMITIVE VARIABLES

Strings (str)

There are only a few built in variables in python:

Integers (int) Floats (float)

Any form of text. These can be enclosed in single (‘) or double (“) quotes. They

also accept escape characters (i.e., \n, \t, \a)

In [1]: var1 = ‘This is a String’
In [2]: var2 = “This is also a String”

When added, they make a longer string:

In [3]: var3 = var1 + var2

BASICS OF A SCRIPT: PRIMITIVE VARIABLES

Strings (str)

There are only a few built in variables in python:

Integers (int) Floats (float)

Any integer (…, -1, 0, 1, …). Mathematical operations are as you expect

In [1]: var1, var2 = 1, 2

They are subject to floating point math:

In [2]: var1/var2 # will give you 0.5, not 0
In [3]: var1//var2 # will give you 0, not 0.5

BASICS OF A SCRIPT: PRIMITIVE VARIABLES

Strings (str)

There are only a few built in variables in python:

Integers (int) Floats (float)

Any integer (…, -1, 0, 1, …). Mathematical operations are as you expect

In [1]: var1, var2 = 1, 2

They are subject to floating point math:

In [2]: var1/var2 # will give you 0.5, not 0
In [3]: var1//var2 # will give you 0, not 0.5Taking an exponent uses the

double asterisk character (**):

x = y**2

BASICS OF A SCRIPT: PRIMITIVE VARIABLES

Strings (str)

There are only a few built in variables in python:

Integers (int) Floats (float)

Any integer (…, -1, 0, 1, …). Mathematical operations are as you expect

In [1]: var1, var2 = 1, 2

They are subject to floating point math:

In [2]: var1/var2 # will give you 0.5, not 0
In [3]: var1//var2 # will give you 0, not 0.5

This is the only case throughout

this workshop that something is

different in Python 2: integer

division is default

BASICS OF A SCRIPT: PRIMITIVE VARIABLES

Strings (str)

There are only a few built in variables in python:

Integers (int) Floats (float)

Any real number (1.0, 2.5, 1e25). Mathematical operations are as you expect

In [1]: var1, var2 = 1.0, 2e2

Any operation with an int and a float will give you a float:

In [2]: 1/2.0 # will give you 0.5, not 0

BASICS OF A SCRIPT: PRIMITIVE VARIABLES

Strings (str)

There are only a few built in variables in python:

Integers (int) Floats (float)

Any real number (1.0, 2.5, 1e25). Mathematical operations are as you expect

In [1]: var1, var2 = 1.0, 2e2

Any operation with an int and a float will give you a float:

In [2]: 1/2.0 # will give you 0.5, not 0

Every variable in python is an

object that has methods

(functions) associated with it. You

can access these with the dot

character (.) after the variable

name:

var1.method()

BASICS OF A SCRIPT: LISTS

Basic ordered grouping of any type of variables:

In [1]: list1 = [1, 2, 3]
Lists can contain different types of variables
In [2]: list2 = [1, ‘a’, 3.4]
You can make lists of lists
In [3]: list3 = [1, [‘a’, ‘b’, ‘c’] , 3.4]

Accessing individual components of a list:

In [4]: x = list1[2] # Returns the 3rd element
Indexing of lists starts at 0 and goes to n-1
In [5]: len(list1) # Gets the size of the list

BASICS OF A SCRIPT: LISTS

Useful functions associated with lists:

Create a list of integers from 0 to 3
In [1]: list1 = range(4)

Sort your list
In [2]: sortedlist = sort(list2)

Add more to your list
In [3]: list3 = list3.append(newvariable)

Combine multiple lists together
In [4]: combinedlist = list1 + list2

BASICS OF A SCRIPT: LISTS

Useful functions associated with lists:

Create a list of integers from 0 to 3
In [1]: list1 = range(4)

Sort your list
In [2]: sortedlist = sort(list2)

Add more to your list
In [3]: list3 = list3.append(newvariable)

Combine multiple lists together
In [4]: combinedlist = list1 + list2

You can create an empty list to

append to:

emptylist = []

BASICS OF A SCRIPT: TUPLES

Ordered grouping of variables. Not as flexible as lists (not mutable)
but the basics are the same:

In [1]: tuple1 = (1, 2, 3)
In [2]: tuple2 = (1, ‘a’, 3.4)
In [3]: tuple3 = (1, (‘a’, ‘b’, ‘c’), 3.4)

Can also quickly assign values from within tuples:

In [4]: tuple4 = (1, 2, 3)
In [5]: var1, var2, var3 = tuple4
also works for lists

BASICS OF A SCRIPT: INDEXING

0 1 2 3 4 5 6 7 8 9

Taking a simple list:

list[0] list[5] Simple indexing

BASICS OF A SCRIPT: INDEXING

0 1 2 3 4 5 6 7 8 9

Taking a simple list:

list[-10] list[-5] Inverse indexing

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

BASICS OF A SCRIPT: INDEXING

0 1 2 3 4 5 6 7 8 9

Taking a simple list:

list[1:]

list[5:8]

Spanning arrays

list[1:-1]

BASICS OF A SCRIPT: INDEXING

0 1 2 3 4 5 6 7 8 9

Taking a simple list:

list[1:]

list[5:8]

Spanning arrays

list[1:-1]

The range you choose will

exclude the value at the stop

number

BASICS OF A SCRIPT: INDEXING

0 1 2 3 4 5 6 7 8 9

Taking a simple list:

list[::2]

Changing counting

BASICS OF A SCRIPT: INDEXING

0 1 2 3 4 5 6 7 8 9

Taking a simple list:

list[::2]

Changing counting

To reverse the order of an array,

just use:

[::-1]

BASICS OF A SCRIPT: DICTIONARIES

Unordered grouping of variables accessed by key. Anything can be a
key or a value:

In [1]: dict1 = {‘val1’:1, 2:2, ‘val3’:3}
In [2]: dict1[‘val1’] # Returns 1
In [3]: dict1[‘newval’] = 4 # Add new value

Can quickly get all the keys in a dictionary (in a list):

In [4]: dict1keys = dict1.keys()

BASICS OF A SCRIPT: FUNCTIONS

Making a function is quite simple and can be defined anywhere:

def function1(var1, var2):
Your Code goes here
var3 = var1 + var2
return var3

You can define optional arguments and return multiple values:

def function1(var1, var2=‘value’):
var3 = var1 + var2
return var3, var2 # This will be a tuple

BASICS OF A SCRIPT: FLOW CONTROL

Conditional (if-else) statements:

if var1 == 0:
Code to run if var1 is 0

elif var1 == 1:
Code to run if var1 is 1

else:
Code to run otherwise

BASICS OF A SCRIPT: FLOW CONTROL

While loop:

while var1 > 5:
Code to run (in a loop) if var1 > 5

For loop:

for tmp_var in list1:
tmp_var is set to the values in list1

If you want a for loop with numbers from 0 to N-1:

for tmp_var in range(N):
Code to run with tmp_var = 1 to N

BASICS OF A SCRIPT: FLOW CONTROL

continue

Skip everything else in this iteration and move to the next:

break

Exit out of the most recent loop:

Special keywords when you are within loops or conditionals

These keywords are usually put in conjuction with an if statement.

BASICS OF A SCRIPT: PRINTING

Printing is very easy:

In [1]: print(“This is a message.”)
In [2]: print(variable1)

Mixing variables and text is also easy:

In [1]: print(“This is a %s message.” % “string”)
In [2]: print(“%f, %i” % (2.0, 2)) # Using tuple
In [3]: print(“%1.3f” % 1.12345) # Prints 1.123

EXERCISE TIME! Hello from the other side.

